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ABSTRACT 
 
Brain tumor detection is still a challenge in the field of brain compute-aided diagnosis. In the brain Magnetic 
Resonance Images (MRI), the correlation between lateral ventricles deformations and tumor existence has been 
found useful in brain tumor detection and prediction. To retrieve the lateral ventricles deformation data for further 
statistical analysis and processing, a new method has been proposed in this paper to analyze the deformation of 
ventricles. Firstly, in this method, the boundaries of the lateral ventricles are segmented, pixels on the boundary are 
sampled, and a nonlinear interpolation method based on Thin Plate Spline (TPS) is conducted to create a more 
accurate template image for each specific case, followed by the application and performance comparison between 
TPS with Radial Basis Function Neural Networks (RBF-NN) and Radon Transform (RT) on the extracted Skeleton 
of the boundary of the ventricles for locating the optimal orientation of the image through iterative image rotation. 
The reorienting facilitates the final step of deformation analysis whereby the reoriented ventricles are analyzed 
based on the displacement values obtained from the TPS of the sampled template and the diagnostic lateral 
ventricle. By comparing with several real cases, our experimental results suggest that this method is effective and 
relevant in ventricles deformation analysis and prediction of tumor location. The performance comparison results 
also suggest that using RT on Skeleton is an efficient method in locating the optimal orientation where the results 
show that the computing speed is at least more than 100 times faster than using TPS and RBF-NN. 
 
Keywords: Magnetic Resonance Imaging, Lateral Ventricles, Deformation Analysis, Thin Plate Spline, 
Morphing, Radon Transform, Skeleton, Radial Basis Function 
 
 
1.0  INTRODUCTION AND MOTIVATION 
 
The objective of this work is to construct a scheme for predicting the approximate location of brain tumors based on 
the deformation of the lateral ventricle boundary, without studying any property of brain tumor, to provide 
assistance for further work on brain compute-aided diagnosis of brain tumor and segmentation. 
 
It is found that there is a correlation between shape deformation of the brain ventricular compartments and the 
probability of tumor existence.  As a case study, if there is a blockage of the ventricular system causing the flow of 
CSF interrupted, for example, a blockage within the cerebral aqueduct, the normal flow of fluid formed in the lateral 
ventricles and the third ventricle is interrupted, and the lateral ventricles and third ventricle begin to swell with CSF. 
The swelling or enlargement is termed hydrocephalus. Hydrocephalus can also result from the formation of CSF (as 
can occur with a tumor in one of the choroid plexuses) that exceeds the amount that can flow through the ventricular 
system, or from a downstream-diminished capacity to absorb CSF [1]; therefore, studying the lateral ventricles 
deformation becomes a useful assistance to certain cerebral diseases diagnosis. 
 
As can be discerned from Fig. 1, when one or more tumors exist, though being irregular with respect to the physical 
and chemical properties of the existing brain tumors, the shape of the lateral ventricles will be deformed by the 
compression from the growth of brain tumor. From the observations in some cases, part of the ventricle shrinks to 
the opposite direction of the brain tumor. 
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Therefore, finding out the deformation of the lateral ventricular compartment is useful in making an estimation or 
prediction to the probability and location of the existence of brain tumor.  As can be seen from the healthy brain 
MRI in Fig. 1 (f), the shapes of the left and right lateral ventricular compartments are similar to each other. 
However, in the cases where brain tumor exists as in Fig. 1 (a - e), the compression from tumor which leads to 
lateral ventricle deformation will normally affect more on one ventricle, and create an imbalance on the shape of the 
two ventricles. Hence, the shape difference between the left and right lateral ventricles is offering an additional 
indicator in estimating the existence of brain tumor. 
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Fig. 1:(a,d) T1 and T2 weighted MR images with tumor [2], (b,e,c) T1 and T2 weighted MR images with tumor[3], 
(f)T1 weighted MR image of normal brain [4] 

 
From the problems related with brain MR images segmentation that was discussed in our previous work [5][6], 
factors such as noise, spurious blobs, inhomogeneous pixel intensity distribution, and blunt region boundary which 
contribute to the complexity in the segmentation are distributed in the whole brain MR images. This creates greater 
challenges to brain tumor detection and segmentation. Even by some advanced methods, those problems are only 
able to be alleviated, but are not able to be fully solved due to the nature of MR images retrieval. Therefore, 
minimizing the brain tumor detection scope will be a desirable approach in solving the problems. 
 
It is then reasonable to take advantage of the correlations between ventricles shape deformation and the existence of 
brain tumor to shrink the region down to reduce the tumor detection and segmentation workload.  In order to get the 
optimized ventricle deformation analysis results, desirable methods should be selected or designed. 
 
In the pioneering works related with image deformation analysis, Gaser et al. [7] used Thin Plate Spline (TPS) for 
deformation based morphometry on the MRI slices to match the image under diagnosis to the template; For image-
guided surgery systems during neurosurgery, Ferrant et al. [8] used a deformable surface matching algorithm to 
capture the deformation of boundaries of key structures (cortical surface, ventricles and tumor) throughout the 
neurosurgical procedure, and a linear finite element elastic model to infer a volumetric deformation. To perform 
analysis on the effect of alcoholism on brain structure, Rohlfing et al. [9] performed two types of morphometry and 
justified by the invariance of relevant statistics under changes of the spatial and temporal reference coordinate 
system on the acquired two structural MR brain images; Mardia et al. [10] addressed the problem of the distortion 
effect produced by different types of non-linear deformation strategies on textured images. The extensive analysis 
on a deterministic deformation and a landmark based deformation including TPS was also performed in their study; 
Ross et al. [11] applied TPS and developed an average deformation model in the area of fingerprint matching; Lin 
and Lin [12] developed a three-dimensional (3D) image deformation technique to integrate multimodality medical 
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images by combining the 3D optical flow (OF) estimation and applied TPS transformation on landmarks tracing and 
geometric deformation.  
 
In this paper, the use of TPS to find the area with the most significant displacement is proposed. The lateral 
ventricle boundary is obtained after the lateral ventricular compartments are segmented by the modified Fuzzy-C 
means algorithm in our previous work [5][6]. Due to the discrepancy in age, sex, personal brain structure, and even 
MR image slice number, though similar to each other, shapes of diagnostic and template images may be varied 
greatly to each. Therefore, an interpolated image should be served as a new template which morphs between the 
template and diagnostic images to enhance the accuracy for the later processes. A nonlinear morphing method based 
on TPS [13] is used here to create a more accurate interpolation result. 
 
It is found that the orientation between diagnostic and template MR images is the key for creating an accurate result 
for the TPS displacement analysis. Therefore, it is important to adjust the diagnostic MR image orientation 
according to the correlation between the diagnostic and template images before the TPS displacement analysis. 
Because the TPS output data is based on the displacement between the diagnostic and template ventricles, TPS 
displacement values can also serve as an error measure to be used in the process of finding the best orientation 
match between the template and the diagnostic image. The displacement information from the TPS analysis on the 
Skeleton [14] has therefore used in our first reorientation method by the Radial Basis Function Neural Network 
(RBF-NN) as its error measure input.  
 
An alternative method of reorienting is also proposed in this paper which uses Radon Transform (RT). The RT is 
applied on the Skeleton of the lateral ventricle and the orientation of the diagnostic ventricle Skeleton with the 
highest RT value will then be matched with the orientation of the template Skeleton with the highest RT value. The 
two methods of reorienting has been implemented and experimented; its result shall be compared and discussed in 
this paper. In Section 2 of this paper, the background of the TPS, RBF-NN, and RT methods used in our study are 
presented. The general overview of the algorithm that has been implemented and experimented is also discussed. 
The result from the experiments is then presented and discussed in Section 3.  
 
 
2.0  EXPERIMENTAL METHODS 
 
2.1  Image Interpolation using TPS 
 
Interpolated images are certain frames retrieved from a sequence of morphed images. Image morphing is an 
animated transformation of one image to another. It is used in the experiments to reduce negative effect from the 
shape difference between template and diagnostic images due to discrepancy between age, sex, personal brain 
structure, and even MR image slice number. 
 
The simplest approach in morphing just linearly fades from one image to the other, i.e. it uses linear interpolation of 
the gray or color value for the two images at every pixel location. The result is not very impressive as the shape of 
image objects is in no way accounted for. A better solution is to transform each image so that pixels that belong to 
the same object-parts are aligned in a common coordinate system. In the experiments, Thin Plate Spline (TPS) is 
used. 
 
The term TPS originally refers to the physical analogy of bending thin metal plate introduced to geometric design 
by Duchon [15]. A flat metal plate can be represented by 2-dimensional coordinate x and y. A bended metal plate 
will have a displacement perpendicular to the x and y coordinate and therefore be represented with 3-dimensional 
space, x, y and z.  
 
The biharmonic equation as shown in Equation 1 has a fundamental solution as shown in Equation 2 [13], 
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where refers to the displacement orthogonal to the plane x-y. ),( yxz
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TPS is a process of finding a function, which minimizes the bending energy E as in Equation 3 below [13]: ),( yxz
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In the case of 2-dimensional coordinate transformation using TPS, only 2-dimensional space is used in which the 
displacement in the z direction is reinterpreted as a displacement in the x and y coordinate. Fig. 2 below shows the 
original coordinate of the control points as indicated by the black dot and the surrounding TPS data points arranged 
as a mesh. 
 

 
Fig. 2: Initial TPS mesh 

The displacement in the z direction is remapped as a displacement of the original data point coordinate (x,y) in 
either x direction or y direction or both as shown below: 
 

)),(,(),( yxzxyx →  (4) 
 or 

)),,((),( yyxzyx →  (5) 
 or 

)),(),,((),( yxzyxzyx →  (6) 
 

 
Fig. 3: Deformed TPS mesh 
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Fig. 3 above shows that the data points that is originally arranged in a grid pattern is remapped when the control 
points as indicated by the black dot undergoes coordinate transformation. 
 
In the applications of TPS morphing, TPS is mainly served as a coordinate transformation method. In the 
experiments, firstly, the corresponding landmark points on the imaged object in the two images are identified. TPS 
transformation is then estimated from the first to the second for a time parameter, [ ]1,0∈t  with a time step of 0.05 
in which the first image is the template and the second image is the diagnostic.  

Table 1: Interpolated ventricle boundaries 

(a) (a) (a) 

(a) (a) (d) 

(a) (a) (g) 

(a)(a)(b) (a) (a) (c) 

(a)(a)(e) (a) (a) (f) 

(a)(a)(h) (a) (a) (i) 

Target Ventricle T=0.1 T=0.5 T=0.9 
Fig. 1(a,d) 
 
 
 
 
 
 
 
 
 

   

Fig. 1 (b,e) 
 
 
 
 
 
 
 
 
 

   

Fig. 1 (c) 
 
 
 
 
 
 
 
 
 

   

 
Any image between  to  can be used as interpolation interval. Interpolated image of time 0=t 1=t 5.0=t  is 
applied in this study as it is the middle image which shares the properties between both images. Table 1 below show 
the interpolated images between template images as in Fig. 1 (f) to diagnostic ventricles at certain intervals. 
 
After the image interpolation process, template images are replaced by the interpolated images hereafter within this 
study. 
 
2.2  Brain Lateral Ventricle Reorientation 
 
2.2.1  Reorientation using TPS and RBF-NN 
 
In the experiments, Radial Basis Function Neural Network (RBF-NN) is applied to the TPS analysis output data 
which is the TPS displacement value that will be discussed later in this paper.  RBF-NN is a type of supervised feed 
forward neural network that uses Radial Basis Function (RBF) as the activation function in the neural network 
hidden layer. Fig. 4 below shows the topology of a simple feedforward neural network which consists of the input 
layer, hidden layer, and the output layer. 
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Hidden layerInput layer Output layer

Fig.4: Topology of a simple feedforward neural network 

 
The hidden layer of a RBF-NN consists of nonlinear activation function which is the radial basis function while the 
output layer consists of linear activation function in which the output is the sum of its weighted inputs. 
 
RBF is a function that operates on any norm which is usually an Euclidean distance of a point, x from a center, c as 
shown below in Equation 7 [16]. 

 
)(),( cxcx −= φφ  (7) 

 
It can be proven that any function can be approximated using a sum of N Radial basis functions each with different 
centers,  and weights,  as shown in Equation 8 [17][18].  ic iw
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Equation 8 is a representative of the function of the Radial Basis Function Neural Network. The radial basis 
function of type Gaussian is used in our reorienting experiment as shown in Equation 9 while the form as shown in 
Equation 10 is used in deformation analysis experiment using TPS [19], 
  

)exp()( 2rr βφ −=  for 0>β  (9) 

)log()( 2 rrr =φ  (10) 
 

where r  is the Euclidean distance function. 
 
In the case of nb number of middle layer neuron and 1 output node as used in our experiments, the RBF-NN 
operation can be summarized as shown in Equation 11 below [19]: 
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where y is the output of the neural network, x is the input vector to the network, λ is the RBF width, c is the center 
of the RBF, and w and b is the linear layer input weight and bias respectively. 
 
The RBF neural network uses supervised learning where the number of centers, nb and its value, c , the input weight 
to the linear layer, wi, and the linear layer bias, b, are modified based on the error between the real output, y, and the 
predetermined target output value with a predetermined input vector value, x. The learning will stop when the error 
converges to a low level. 
 

120 
Malaysian Journal of Computer Science, Vol. 20(2), 2007 



Brain Magnetic Resonance Image Lateral Ventricles Deformation Analysis and Tumor Prediction pp. 115 - 132 
 

In the experiments, the RBF-NN is trained using two input vector and two target value. For the first input vector, a 
vector in which all its elements are zero and for the second input vector in which all its elements is the maximum 
value of the elements in the expected input vector are used. 
 
The corresponding target output is a value of 0 and a value which is 4 times the maximum value of the elements in 
the expected input vector. The RBF function width, λ , is set to 50 times the maximum value of the elements in the 
expected input vector. The idea is to train the RBF neural network to find a sort of mean of the input vector. 
 
After the RBF neural network is trained, it is then ready to be simulated. By inputting a form of error measure as the 
input vector, the network can be used for the determination of the input vector with the least error based on its 
output value. 
 
The Skeleton of the template and diagnostic lateral ventricle which is obtained through morphological operation 
[14] is used in the TPS analysis to find the displacement between them. Based on the displacement value as its 
input, the network will produce an output value that will be used for the determination of the orientation with the 
least displacement.  
 

Algorithm 1: Reorienting using TPS and RBF-NN 
Input:   Template image, T and Diagnostic image, D 
Output: Reoriented Diagnostic image 
Step 1: Preprocessing 
Obtain Template Skeleton, TS and Diagnostic Skeleton, DS 
Step 2: Initialization 
Iteration counter, 1=I ; 
Rotation counter, 0=R ; 

°→°−= 9090rangeAngle ;  

8/rangeAngleincrementAngle = ; 

°−= 90norientatioDS ; 
Step 3: Start Iteration 
for I = 1; I < 5; I++ 
for R = 0; R<=8; R++ 
1. )()( rightleftnorientatioDs DSDSRotateDS +=  (Extract the rotated left and right DS while 

preserving the alignment between the two) 
2.  and heightTSheightDS = heightDSheightTSwidthDSwidthDS /*=  (Resize the 
extracted DS heights to be the same as the TS height while maintaining aspect ratio) 
3. TPS displacement values, OR DTPSD =  from Algorithm 3 

4. incrementAnglenorientatioDSnorientatioDS +=  
end for 
5. Train RBF-NN to find a sort of mean of its input: 
Input:                       Target: 01 =NX L 0=Y  

Input:   Target: )max( 801 →= TPSDX NL )max(4 80→×= TPSDY  
6. Simulate the trained RBF-NN:  
Input:                 Output: 8091 →→ = TPSDX )( 9191 →→ = XYY  

7.  ),,,min( 921 YYYYatangleangleBest L==
8. )()( incrementAngleangleBesttoincrementAngleangleBestrangeAngle +−=  

9. incrementAngleangleBestnorientatioDS −=  

10. ; 8/rangeAngleincrementAngle =
end for 
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In the experiment, the TPS displacement value is used as an error measure. The initial rotation range is set to -90 to 
90 degree. For each iteration, the TPS displacement value between the template and diagnostic Skeleton is 
calculated for 9 equally spaced angles from the rotation range. The best angle with the least TPS displacement value 
as found from the output of the RBF-NN will be selected as the center angle of the next reduced rotation range. The 
iteration proceeds until the 5th iteration and the best angle found will be used to reorient the Diagnostic lateral 
ventricle. The method used to reorient the diagnostic lateral ventricle image using TPS displacement values as an 
error measure input for the RBF-NN is shown in Algorithm 1. 
 
2.2.2 Reorientation using Radon Transform 
 
Radon Transform (RT) is applied as the second method of reorienting in the experiments. It is based on the 
principle of skew detection and correction which is similar to the work done by Rajiv et al. [20]. The method uses a 
common property between the Skeleton of the template and diagnostic which is their longest straight line and tries 
to match the two together by rotating the Diagnostic Skeleton based on the result of the RT.  
 
RT is a method of representing a 2D image in 1D space by the use of straight line projection [21] of the image 
intensity as illustrated in Fig. 5 below. For each rotation of the image, a line integral of the image in the direction of 
projection will be performed and the values obtained from each line integral will be the sum of the intensity of the 
image along the line integral.  

 

y 

x 

Fig.5: RT - Image Rotation and projection  

Sensor  

f(x,y) 

Source  

Rotation 
angle, θ 

 
 
 
As seen from Fig. 6 below, the RT will perform line integrals parallel to axis y’ on function which 

represents the intensity of the square image based on its coordinate x and y to make up the function . In 
essence, for 2-dimensional case as shown below, the RT will sum up the intensity that makes up the object matrix 
along a certain direction depending on the rotation angle, θ of the x’ axis. 

),( yxf
'(xRθ )

 
The Equation 12 below summarizes the general idea of the RT [21], 
 

∫∫ −−= dxdyyxxyxfxR )sincos'(),()'( θθδθ  (12) 

where δ is the Dirac function. 
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Fig. 6: RT - Line Integral of a square object along y  

 
The method used to re-orientate the diagnostic lateral ventricle image using RT is as shown in Algorithm 2. 
 
 

Algorithm 2:Reorienting using Radon Transform 
Input:   Template image, T and Diagnostic image, D 
Output: Reoriented Diagnostic image 
Step 1: Preprocessing 
Obtain Template Skeleton, TS and Diagnostic Skeleton, DS 
Step 2: Initialization 

°= 45angleStaring ; 
1=i ; 

Step 3: Start iteration 
do  
1.  (Rotate DS to Starting angle) )()( DSRotateDS angleStarting=

2. ,  (Perform RT on TS and DS) )(9090 TSR →−=θ )(9090 DSR →−=θ

3. ,    

 

))(max( 9090 DSRatangleanglebest DS →−== θ

))(max( 9090 TSRatangleanglebest TS →−== θ

(Find the angle of maximum RT value for TS and DS as template angle and diagnostic angle 
respectively) 
4. )( DSTS anglebestanglebestangleStartingangleStarting −+=  

5.  1+= ii
while 3≥− DSTS anglebestanglebest  

 
The RT is applied to find the transform at -90 to 90 degrees rotation angle. RT is firstly applied on the left and right 
Skeleton of the template separately. Following that, the transform of the left and right of the diagnostic Skeleton is 
then obtained. By analyzing the RT of the template and diagnostic left and right Skeleton, the maximum value of the 
transform is used for orientation matching purposes. The diagnostic Skeleton is rotated based on the difference 
between the angle of maximum RT value of the template and the diagnostic. The process of applying the RT and 
reorienting the Skeleton is performed until the difference in angle of maximum RT value between the template 
Skeleton and the diagnostic Skeleton is less than three degrees. 
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2.2  Brain Lateral Ventricle Deformation Analysis 
 
2.2.1  Deformation Analysis using TPS 
 
Continued from the discussion on TPS in the previous section, TPS is again served as a tool for deformation 
analysis. In this experiment, Equation 12 is used to map the displacement from the original data points to the final 
data points. The original coordinate of the control points are the sampled boundary of the Template, PTemplate and the 
final coordinate of the control points are the corresponding sampled boundary points of the Diagnostic, PDiagnostic. A 
total of 64 control points are sampled for each left and right ventricle boundary and its Skeleton. The sampling starts 
at the same vertical position between the template and the diagnostic. The sampling then proceeds in a clockwise 
direction for the left lateral ventricle and anticlockwise for the right lateral ventricle. By using the standard 
Euclidean distance function on the original data points and the corresponding final data points, the displacement, DO 
is shown below in Equation 13: 
 

2
__

2
__ )()( yDisplacedyOriginalxDisplacedxOriginalO PPPPD −+−=

 (13) 
 
where POriginal  is the original data point coordinate, PDisplaced  is the final data point coordinate. 
 
Based on the displacement in the x-y plane from the original data points, the displacement value is separated into 
certain ranges. In the current experiment, an active threshold method where the threshold value is between 0 and 1 
is used to be multiplied with the maximum displacement value as shown in Equation 14 below: 
 

thresholdDDRange ×= max  (14) 
 
The original data point that has a displacement value which is within the threshold range,  is plotted with a 

certain intensity value. In the experiment, 10 different threshold values are used to separate the displacement value 
to 10 linear ranges between the zero displacement value and the maximum displacement value. The maximum 
displacement value is marked with a cross in a circle. The area surrounding the mark is postulated to be the source 
of deformation. 

RangeD

 
The steps used for deformation analysis using TPS are shown in Algorithm 3. 
 

Algorithm 3:TPS analysis algorithm 
Input: Template and Diagnostic ventricle or their Skeleton 
Output: TPS displacement values 
Step 1: Boundary sampling 
  1. )(_ )templateBoundaryNumbertemplatepnum =  and 

)(_ diagnosticBoundaryNumberdiagnosticpnum =  (Estimate the total point number of template 

and diagnostic images) 
  for I = 1; I <= 64; I++ 
  2.  and 

 
Itemplatepnumceiltemplateitemplate Boundaryp )*64/_(,, =

Idiagnosticpnumceildiagnosticidiagnostic Boundary )*64/_(,, =p
(Sample 64 points on the Template boundary, PTemplate  and corresponding Diagnostic boundary, 
PDiagnostic) 
end for 
Step 2: TPS warping 
2. Input Ptemplate   as the source or initial control point position 
3. Input Pdiagnostic as the target or final control position 
Step 3: Analyze difference between original and warped TPS 

 

124 
Malaysian Journal of Computer Science, Vol. 20(2), 2007 



Brain Magnetic Resonance Image Lateral Ventricles Deformation Analysis and Tumor Prediction pp. 115 - 132 
 

4. From, dxdy
y

yxz
xy

yxz
x

yxzyxzE ∫∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

2

2

2222

2

2 ),(),(2),()),((   

and 
)),(),,((),( yxzyxzyx →  

 

))(),((
))(),((

,
diagnosticdiagnosticDisplaced

templatetemplateOriginal
O PzPzP

PzPzP
DvaluesntdisplacemeTPS

−
=  

(Find the displacement between the original TPS data points, POriginal and the corresponding displaced 
TPS data points, PDisplaced) 
 
Step 4: Plotting 
6. Use active threshold to separate the TPS displacement values, D0 to 10 ranges 

thresholdDDRange ×= max  

7. Plot back the coordinates with the displacement ranges,  using 10 grayscale value and mark 

the location of maximum displacement. 
RangeD

 
 
3.0  RESULTS AND DISCUSSION 
 
The result shown in Table 2, Table 3, and Table 4 were obtained after reorienting the original diagnostic lateral 
ventricle image and applying TPS analysis on the re-orientated image. The Skeleton of the template and diagnostic 
ventricle boundary were used in both the TPS and RBF-NN based reorientation algorithm and RT based 
reorientation algorithm. In this section, the two reorienting methods are compared and the performance of each is 
evaluated. The subjective evaluation of the accuracy of the TPS analysis for tumor location predicting is also 
conducted. 
 

 
 

(b) (c) (d) (e) 

(a

[7]  

[8]  
[9]  [10]  

Fig.7: The Template image and its segmented lateral ventricles and ventricle Skeletons 

Fig. 7 (a) shows the original template image in which the left and right lateral ventricle in Fig. 7(b) and (c) were 
extracted from. A morphological operation is then performed on the extracted left and right lateral ventricle to 
obtain their Skeleton as shown in Fig. 7(d) and (e). The template Skeleton will be the basis in which the orientation 
of the diagnostic lateral ventricle Skeleton will be compared and adjusted to match with it.  
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The result shown in index (a) to (h) in each Table 1 to 3 is obtained after the orientation of the diagnostic lateral 
ventricle is adjusted to match the template. The degree in which the left and right diagnostic lateral ventricle and its 
Skeleton is rotated from its original orientation is indicated as adjusted orientation angle in each table. 
 
Based on the adjusted diagnostic lateral ventricle and its Skeleton, TPS analysis is then performed on the sampled 
boundary point of the lateral ventricle and the Skeleton.  From the analysis, the result is obtained as shown in index 
(i) to (l) which is based on the sampled template and diagnostic boundary points and index (m) to (p) which is based 
on the sampled template and diagnostic Skeleton boundary points. The area with the highest TPS displacement 
value is indicated by a cross in a circle mark which indicates the deformation climax predicted from the analysis. 
 
From the result of the TPS analysis on the sampled lateral ventricle boundary using the two reorienting methods, the 
location of the highest TPS displacement value is determined and its place in the context of its original image is 
indicated with the same mark as shown in index (q) and (r) respectively. 
 
The processing time of the whole reorienting process and TPS analysis for the two reorientation method is also 
measured and noted in the last row of each table. The proposed method was implemented using Matlab 7.0 and the 
experiments on the performance between the two reorientation method is performed under an IBM compatible 
personal computer with 2.8 GHz Intel Pentium D CPU and 1 GB RAM. 
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Table 2: Experimental Results on Fig. 1 (a) and (d). 

(c)(c)(c)(c) (d) (d) (d) (d) (b)(b)(b)(b)(a) (a) (a) (a) 

(e) (e) (e) (e) (f)(f)(f)(f) (g)(g)(g)(g) (h) (h) (h) (h) 

 Applying TPS + RBF-NN Applying RT 
 Left Ventricle Right Ventricle Left Ventricle Right Ventricle 
Adjusted 
Orientation 
Angle 

12.30 degree 
clockwise 

11.78 degree 
anticlockwise 

3.80 degree 
clockwise 

14.40 degree 
anticlockwise 

Segmented 
Ventricle 

[11]  

[12]  
[13]  [14]  

Skeleton  

[15]  
[16]  [17]  [18]  

(i) (i) (i) (i) (i) (j)(j)(j)(j) (k)(k)(k)(k) (l) (l) (l) (l) (l) 

(m) (m) (m) (m) (n)(n)(n)(n) (o)(o)(o)(o)(o)(n)(o) (p) (p) (p) (p) 

(q) (q) (q) (r)
(r)

(r)

(p) 

TPS 
Displaceme
nt values on 
segmented 
ventricle 
boundary 

[19]  

[20]  

[21]  
[22]  

TPS 
Displaceme
nt values on 
Skeleton 
boundary  

[23]  

[24]  [25]  

[26]  

Predicted 
location of 
tumor 

[27]  [28]  

Processing 
time 

798 seconds 3 seconds 
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Table 3: Experimental Results on Fig. 1 (b) and (e). 

(c)(c)(c)(c) (d) (d) (d) (d) (a) (b)

(g)(g)(g)(g) (h) (h) (h) (h) (e) (f)

(k)(k)(k)(k) (l) (l) (l) (l) 

(q) (r)(r)(r)

(i) (j)

Applying TPS + RBF-NN Applying RT  
Left Ventricle Right Ventricle Left Ventricle Right Ventricle 

Adjusted 
Orientation 
Angle 

5.80 degree 
clockwise 

8.44 degree 
clockwise 

0.85 degree 
clockwise 

5.70 degree 
clockwise 

Segmented 
Ventricle 

    

Skeleton  

    

TPS 
Displacement 
values on 
segmented 
ventricle 
boundary 

    

(o)(o)(o)(o) (p) (p) (p) (p) (m) (n)TPS 
Displacement 
values on 
Skeleton 
boundary  

    

Predicted 
location of 
tumor 

  
 

Processing 
time 

838 seconds 2 seconds 
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Table 4: Experimental Results on Fig. 1 (c). 

(c)(c)(c)(c) (d) (d) (d) (d) 

(q) (r)(r)(r)

(a)(a)(a)(a) (b)(b)(b)(b)

(g)(g)(g)(g) (h) (h) (h) (h) (e)(e)(e)(e) (f)(f)(f)(f)

Applying TPS + RBF-NN Applying RT  
Left Ventricle Right Ventricle Left Ventricle Right Ventricle 

Adjusted 
Orientation 
Angle 

1.23 degree 
clockwise 

11.60 degree 
clockwise 

4.65 degree 
clockwise 

8.90 degree 
clockwise 

Segmented 
Ventricle 

    

Skeleton  

    

(k)(k)(k)(k) (l) (l) (l) (l) (i)(i)(i)(i) (j)(j)(j)(j)TPS 
Displacement 
values on 
segmented 
ventricle 
boundary 

    

(o)(o)(o)(o) (p) (p) (p) (p) (m) (m) (m) (m) (n)(n)(n)(n)TPS 
Displacement 
values on 
Skeleton 
boundary  

    

Predicted 
location of 
tumor 

  

Processing 
time 

381 seconds 3 seconds 
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From the result of TPS analysis in Table 2 to 4, it can be seen that the orientated diagnostic lateral ventricle sampled 
boundary and its Skeleton using both the TPS and RBF-NN method and RT method is within reasonable degree 
from the template, although the degree of fit between the template and diagnostic sampled boundary points for the 
two methods is slightly different. Even with a difference of about 15 degree between the orientated right diagnostic 
in Table 1 using the two reorienting method, the location of the maximum TPS displacement does not differ 
significantly. This shows that the TPS analysis algorithm is able to give a stable result of the predicted location of 
the tumor even with a different reorientation algorithm which could have a slight difference in result between them. 
 
Based on the processing time using the two reorientation method, it is estimated that the TPS and RBF-NN 
reorientation method is more than 100 times slower than the reorienting method using RT.  This is mainly due to the 
processor intensive calculation required in the TPS analysis for each orientation of the diagnostic in the process of 
finding the orientation with the least TPS displacement. Therefore, based on our current experimental results, RT 
method of reorientation seems to be a better method as it is more efficient while giving a reasonable result. 
 
 
4.0 CONCLUSION 
 
Thin Plate Spline (TPS) is applied for three times in this study.  It is at first served as a morphing transformation 
method to retrieve a interpolated image between standard template and the diagnostic images to reduce the effect of 
their boundary shape discrepancy. 
 
As Radial Basis Neural Network (RBF-NN) is a type of feed forward neural network that can be used to 
approximate any function, by training it to function as a form of mean operator on an error measure, the orientation 
that gives the least output value from the network can be used as an indicator of the best orientation. From the 
results, it can be seen that the network is able to find the best orientation using Thin Plate Spline (TPS) 
displacement value as an error measure.  However, it is found that using Radon Transform (RT) on Skeleton is 
much more efficient, while the similar results are maintained. 
 
A 2-dimensional TPS can be used for coordinate transformation of a set of control points while affecting its 
surrounding data points with a smooth displacement change. In this paper, the original control points coordinate is 
the sampled template or normal brain ventricle reference boundary, and the final control points coordinate is the 
sampled Diagnostic or the abnormal brain ventricle boundary. By plotting the original data coordinate with an 
intensity value that represents the displacement value, it can be discerned that the area with the highest displacement 
value correlates with the approximate location of the tumor. The predicted result of the direction and location of the 
tumor is relevant to our subjective estimation. It is also found that using Thin Plate Spline (TPS) is effective in 
analyzing the lateral ventricle deformation caused by the compression from the brain tumor.  
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